Pulsation Damper, of the gas cushion type:

1. Always de-pressurize both gas cushion, and liquid, before service.

2. Use NITROGEN, (commercially) oxygen free nitrogen, also know as "O.F.N." This is a precaution against a "diesel" explosion.

 If oxygen were in the damper cushion chamber, and if it had been assembled with a hydrocarbon lubricant, and then a sudden pressure increase or shock occurred the rapid compression of the air or oxygen in the presence of hydrocarbon could cause a diesel explosion. The intense heat of the explosion can generate pressures in excess of the failure pressure of the damper. The end result could be flying components that endanger life as well as the system to which the damper is installed.

3. Do not use CO₂, instead of Nitrogen. Yes CO₂ is inert, but CO₂ will permeate membranes and seals of nearly all known flexible elastomer and plastomer separator types.

4. Always ensure that there is a direct acting relief valve, safety overload protection, or burst disk, in the system. That it is connected in a manner that can not be isolated by a block valve, from the damper. This is because in the event of fire, the gas in a damper will try to expand. Being enclosed, and unable to expand, it will increase its pressure. At the same time the materials of construction will become weaker. In damper designs that are NOT designed to "fail safe", for example those built to ASME (dangerous) code, there may be a burst. The burst will have the stored energy of the pressurized gas behind it. This can spread the fire, endangering the life of emergency response persons.

 Note: Even under the CE pressure equipment directive CE marking code, gas burst discs are not mandatory.

 If you are in Europe or the USA, you may have a damper that is not constructed in accordance with our safety design code. This manufacturer removes all warranties of safety in the USA where the equipment is made to ASME or CE rules, so be sure your system is protected by an overpressure relief device. Also Note: Canada no longer accepts vessels to American code, being adequately safe.

5. Ensure that your mounting method does not prevent built in fail safe features from protecting you.

 SEE BELOW:

 The PulseGuard Safety Difference

 Fail safe, compressed gas overpressure release methods, deployed under our license from M. Packer.

5:1 Safety Factor, "Fail Safe" Pulse Dampers

Nitrogen cushion Pre-Fill energy is released safely at 400% design pressure.

M 28 x 1.5mm pitch.

The deflection that enables seal extrusion is 0.30mm/0.012", only, and is prior to yield.

44 mm

Exaggeration to aid comprehension.

N₂ escape

6:1 Safety Factor, "Fail Safe" Pulse Dampers

Liquid In Bladder Type

DEFORMATION IS EXAGGERATED FOR EASIER COMPREHENSION

A STORED ENERGY BURST IS PREVENTED BY DESIGNED "O" SEAL EXTRUSION

There are 3 segments to the locking ring. Gap between them ensures lift, and escape of the nitrogen cushion pre-fill.

Do NOT mount beneath anything that could stop gas end swell.

Seal release by elastic elongation of bolts. Liquid release without bolt fracture and no stored energy, at 400% Design pressure.

10X

Bolt shanks are turned to thread root diameter.

LIQUID

GAS

Do NOT mount between brackets that could stop bolt elongation.

Do NOT mount in clamps that could stop end "bell mouthing".